
Multiple Query Scheduling for
Distributed Semantic Caches

Beomseok Nam a Minho Shin b Henrique Andrade c Alan Sussman d

aOracle, 100 Oracle Parkway, Redwood Shores, CA 94065
bISTS, Dartmouth College, Hanover, NH 03755

cIBM T. J. Watson Research Center, 19 Skyline Drive, Hawthorne, NY 10532
dDept. of Computer Science, University of Maryland, College Park, MD 20742

Keyword
Multiple query optimization; Distributed query scheduling; Data

intensive computing

Abstract

In distributed query processing systems, load balancing plays an important role in max-
imizing system throughput. When queries can leverage cached intermediate results, im-
proving the cache hit ratio becomes as important as load balancing in query scheduling,
especially when dealing with computationally expensive queries. The scheduling policies
must be designed to take into consideration the dynamic contents of the distributed caching
infrastructure. In this paper, we propose and discuss several distributed query scheduling
policies that directly consider the available cache contents by employing distributed multi-
dimensional indexing structures and an exponential moving average approach to predicting
cache contents. These approaches are shown to produce better query plans and faster query
response times than traditional scheduling policies that do not predict dynamic contents
in distributed caches. We experimentally demonstrate the utility of the scheduling policies
using MQO, which is a distributed, Grid-enabled, multiple query processing middleware
system we developed to optimize query processing for data analysis and visualization ap-
plications.

Preprint submitted to Journal of Parallel and Distributed Computing 27 January 2010

1 Introduction

In distributed query processing systems, cache hit ratio is as important as load bal-

ancing, especially for data and computation intensive applications. In this paper,

we propose distributed query scheduling policies that consider the available cache

contents by employing distributed multidimensional indexing structures or by em-

ploying a statistical prediction method to estimate remote cache contents.

Considerable research has been aimed at minimizing the cost of processing a col-

lection of database queries. This research spans various contexts, including rela-

tional databases and database middleware designed to support data analysis appli-

cations [11, 12, 21, 27, 30]. In spite of those efforts, the fundamental planning

problem has been shown to be NP-complete [27]. The optimization problem in a

distributed environment is even more difficult, as there are additional difficult engi-

neering aspects associated with workload distribution and planning. Nevertheless,

many researchers have focused on minimizing query processing time through data

and computation reuse using heuristics or probabilistically efficient techniques.

Exploiting sub-expression commonality across multiple queries has been shown to

be useful. Such reuse reduces execution time by exploiting cached results [1, 2].

Over the last few years, we have developed a distributed query processing frame-

work named MQO, which was specifically designed to support scientific data anal-

ysis applications. Such scientific data analysis applications process multidimen-

sional spatial-temporal range queries. Query results are tagged with multidimen-

sional coordinate metadata and stored into so-called active semantic caches. MQO

utilizes a semantic cache in its distributed application servers, and can reuse query

results and intermediate query data products to compute all or parts of subsequent

queries. While the large capacity of a distributed cache infrastructure can substan-

tially decrease query processing time, performing scheduling and planning while

preserving cache locality is a hard problem. For example, in a distributed setting,

attempting to obtain global cache snapshot information for query planning is not

2

practical, since cache replacement operations occur dynamically and frequently.

Heterogeneous Grid computing environments provide an ideal setting for data in-

tensive applications that need extensive computational resources, since additional

resources can be tapped in incrementally. In a Grid environment, it is not uncom-

mon to partition datasets onto parallel storage systems and replicate them, which

both improves scalability and avoids single point of failure problems. In order to

harness distributed and replicated datasets, our query processing framework imple-

ments a simple directory service used to store and maintain information about the

location of datasets, and also keeps track of the available query processing capa-

bilities of the servers that store the datasets. When more than one server is able to

process a query, the information maintained by the directory service can be used to

optimize query processing.

In this work, we extended the simple directory service originally available in MQO

to ensure that query planning can benefit from large increases in the size of the dis-

tributed semantic cache, which is made possible by pooling multiple Grid-enabled

servers. In principle, increasing the size of the distributed cache can substantially

decrease the amount of time required to process a query, provided that we can (1)

efficiently index the cache contents and (2) subsequently make use of that informa-

tion in query planning and scheduling.

The main contribution of this work is the design of distributed query scheduling

policies that produce better query plans and faster query response time than tradi-

tional scheduling policies that do not consider remote cache contents. We achieve

those results by, on average, simultaneously increasing the cache hit ratio and

balancing the workload across distributed cache servers. We survey index-based

scheduling policies [23], and propose a new scheduling policy that employs a sta-

tistical method, exponential moving average, to achieve load balance and predict

cache contents.

The rest of the paper is organized as follows. In Section 2 we discuss other re-

3

search efforts related to distributed indexing and multiple query optimization. In

Section 3 we describe the architecture of the MQO middleware. In Section 4 we

discuss how distributed indexing was integrated into the query evaluation process.

In Section 5 we present a new scheduling policy named DEMA. In Section 6 we

present an experimental evaluation, where we examine the performance impact of

different scheduling policies, measuring both query execution and waiting time, as

well as batch execution time. Finally, in Section 7, we make concluding remarks

and describe possible extensions to this work.

2 Related Work

Considerable work has been done on the problem of query optimization in appli-

cation domains ranging from relational databases [8, 16, 25], to decision-support

systems [13, 32], to data intensive analytical applications [3].

Mehta and DeWitt [20] considered how to plan multiple queries using variables

such as current CPU utilization, memory usage, and I/O load. Their goal was to

determine the degree of intra-operator parallelism in parallel database system, to

minimize the total execution time of declustered join methods. Garofalakis and

Ioannidis [10] presented a resource usage model to handle multiple query schedul-

ing on hierarchical parallel systems. Sinha and Chase [28] looked at how inter-

query locality can be exploited for large distributed systems. Their work centered

on heuristics to minimize the flow time of queries where the query scheduler could

re-arrange the query execution order to maximize the reuse of cached data. Our

research group [1, 3] has investigated methods for splitting a query into parallel

sub-queries in order to increase scheduling flexibility and maximize query locality

in Grid environments.

There have also been numerous efforts to develop distributed query processing mid-

dleware systems for data-intensive scientific applications. Rodrı́guez-Martı́nez and

4

Roussopoulos [24] described database middleware (MOCHA) designed to inter-

connect distributed data sources. The system moves the code required to process

the query to the location where the data resides. When neither data-shipping nor

code shipping are viable options, distributed applications have employed proxy

front-ends to distribute the processing for a query. Beynon et. al. [6, 29] pro-

posed a proxy-based infrastructure for handling data intensive applications. Such

approaches are inherently less scalable than relying on a collection of distributed

cache servers available at multiple back-ends.

To seamlessly integrate multiple back-end servers as a single query server, it is

generally helpful to efficiently index the data (cached or otherwise) that each server

has access to. The R-tree was one of the first multidimensional object indexing

data structures to be developed [14]. Kamel and Faloutsos [15] extended that work,

by proposing parallel R-trees (Multiplexed R-trees). One of the limitations of that

approach was that it targeted only a single CPU with multiple disks. That limitation

was overcome by Master R-trees [19] and Master Client R-trees [26], both designed

for shared nothing environments (i.e., distributed memory parallel machines). Both

approaches assume datasets are declustered using a space-filling curve and relative

stability of the indexed datasets. Both assumptions may not hold true in scenarios

where distributed dynamic caches are indexed and updated frequently.

In order to effectively leverage multiple back-end servers for query processing,

methods for load balancing must be considered, as we previously demonstrated

through simulation [31]. More specifically, the savings resulting from reusing a

cached result have to be weighed against the service time and extra load imposed on

the server where the cached result is located. One study in this area was conducted

by Mondal et al. [22], where workload was shifted from heavily loaded servers to

lightly loaded servers in shared nothing environments. Their approach for load bal-

ancing is different from ours in that our work investigates query scheduling policies

instead of moving input datasets between servers to improve load balance.

5

Application
Server

Client

Active
Proxy-G

Application
Server

Application
ServerClient

Client

Client

Cache
Server

query
results

query

results

subquery

subq results

insert
Cache
Server

insert

subquery

searchaggregates
query

results

query
results

subq results

Fig. 1. Overview of the MQO middleware

Our previous work [23] describes a distributed multidimensional indexing scheme

that enables the proxy to directly consider the cache contents available at the back-

end servers for query planning and scheduling. That approach is shown to produce

better query plans and faster query response times than traditional scheduling poli-

cies. In Section 4 we describe these index-based scheduling policies and compare

them with the statistical estimation-based policy developed for this work.

Moving averages are a statistical method to predict trends by smoothing out short-

term fluctuations [9]. Moving averages are commonly used to predict stock prices

and financial data. However, to the best of our knowledge, this paper is the first

work extending moving averages to distributed query processing, predicting dis-

tributed remote cache contents, and achieving load balance in a distributed system.

3 Improving the Multiple Query Processing Middleware

Muti-Query Optimization (MQO) is a middleware system designed to simplify

the development and speed up the execution of large-scale data analysis applica-

tions. MQO’s Grid-enabled configuration employs a proxy service comprising one

or more Active Proxy-G (APG) instances, an application query processing service

6

Fig. 2. Sub-queries generated from reusing cached aggregates.

comprising one or more back-end application servers, and a data caching service

comprising one or more cache servers. This architecture is shown in Figure 1. The

APG works as a front-end to the distributed multiple back-end application servers

that execute application specific operators. These operators implemented by scien-

tific applications process multidimensional range queries, which access the subset

of data that falls within the range of values for each dimension. When a range query

is received by the proxy, it may be able to process the query directly using its local

cache contents. If the intermediate results in the cache alone cannot be used to fully

compute the results for a query, the proxy server generates sub-queries for the un-

resolved portions as in Figure 2 and repeats the same process for the sub-queries,

recursively. If no processing can be done by the proxy, the query is forwarded to

back-end application servers, which then use their local cache or directly access the

raw datasets to compute the results.

When a client submits a query through the proxy, the proxy’s main task is to locate

a suitable back-end application server to process it. The proxy employs a direc-

tory service (which we refer to as the Light Directory Service, or LDS), where

information such as the location of datasets as well as recent performance met-

rics are stored. Dataset locations constrain the set of back-end application servers

that can be used for servicing a query (i.e., in the current prototype a query can

only be processed by a back-end application server that has direct access to the

7

datasets referred to by the query). Performance metrics collected by the proxy can

be used for partitioning and balancing the work when multiple back-end application

servers are able to process a query. When replicas exist, the proxy has to select one

of them based on a scheduling policy. The original MQO implementation could

be configured to use two different policies [2]: (1) round-robin, where a replica

is selected based solely on where the last query was serviced, and (2) load-based

policies where the least busy back-end application server with a suitable replica is

selected. Note that clients can also directly submit queries to back-end application

servers, if they know where the datasets are located. This capability may increase

the potential for load imbalance. That is, imperfect information at the APG as well

as additional load from servers directly submitting queries to back-end application

servers compound the scheduling problem.

With the original query scheduling policies employed by MQO, the proxy service

could only leverage previously computed results that were part of queries it had

seen (i.e., queries that had been submitted through the proxy interface). Moreover,

the proxy cache contents are only related to the query final data product. While we

have previously shown that this approach was indeed able to provide substantial

decreases in query execution time [2], it does not permit the utilization of interme-

diate data products that are automatically cached as a query is processed, because

these data products are only available at the back-end application servers. Further-

more, the proxy cache can only grow in size up to the available storage in the node

hosting the proxy. For these reasons and in order to generate better query plans

that take into consideration the contents of remote semantic caches, an efficient

distributed index is needed.

The semantic caches available at the back-end application servers are independent

and evict content as need arises according to their own cache replacement policies,

without any global coordination. In general, strong distributed cache consistency is

expensive and inherently non-scalable. More to the point, it is very difficult to keep

track of the up-to-date contents of remote semantic caches in large distributed sys-

8

tems. However, strong cache consistency is not necessary for application correct-

ness, as query results can always be computed directly from the raw datasets, albeit

with a performance penalty. Therefore, it is possible to tolerate cache misses, which

may occur when a query plan is assembled based on stale information. Typically, if

recomputing a query from scratch is inexpensive as measured by I/O and CPU pro-

cessing costs, simply Distributing the load across back-end application servers may

perform reasonably well. However, many scientific and visualization applications

are both data and compute intensive. It is often faster to reuse cached aggregates

rather than to generate them from scratch [17, 18]. For these applications, increased

reuse of cached aggregates and improved load balance will decrease average query

execution time and maximize overall system throughput. As will be seen in the next

section, we do that via distributed indexing.

4 Query Scheduling Policies with Distributed Indexing

In many scientific and large-scale visualization application domains, a data analysis

query typically has two components that make up its predicate: one that specifies

the processing necessary to generate the desired data product (specified as a di-

rected graph containing nodes that denote the operators to apply on the flow of

data, e.g., sampling, aggregation, filtering, geometric transformation, etc.), and an-

other that specifies the spatial domain, usually in the form of a minimum bounding

rectangle (MBR) that represents latitude/longitude ranges, 3-D spatial coordinates,

etc. Thus, not only is the final data product associated with multidimensional coor-

dinates, but so are the intermediate data products computed as a query is processed.

All of these aggregates are automatically cached and indexed by the middleware.

The multidimensional coordinates for the datasets can be indexed using multidi-

mensional indexing structures, such as R-trees [14]. A multidimensional index en-

ables update and search operations to be performed in parallel, thus providing the

means for distributing the load across multiple servers. There are several ways to

9

MBR
A

MBR
C

MBR
B

MBR
K

MBR A MBR B MBR C MBR K

Local index A Local index B Local index C Local index K

…

… … … …

Fig. 3. A Distributed index

implement a distributed multidimensional index, depending on workload character-

istics. The best choice depends on the type of index operations to be performed fre-

quently (e.g., lookups, inserts, deletes) as well as the nature of the expected cache

contents. Since the index tracks the contents of an application server’s semantic

cache, as new objects are inserted or removed (as a result of a cache eviction),

the index must be frequently and quickly updated. In most cases the overhead of

query update is negligible compared to the benefits of cache hits in data intensive

applications.

Multidimensional indexing can be integrated into MQO’s distributed caching in-

frastructure to aid in locating candidate servers for executing queries or sub-queries

on behalf of the proxy service, to make better query planning and scheduling de-

cisions [23]. Each data object stored in the back-end servers’ semantic cache is

tagged with spatial coordinates, in addition to other attributes.

Figure 3 depicts an example internal organization for a distributed index. To search

the index, the multidimensional predicate of a query is presented to the global index

in order to determine which local index (or indices) may contain objects relevant

to the query. Each data server has its local index for managing the data products

10

that are generated locally as a byproduct of computing the results of queries. The

comparison between the query’s MBR and those MBRs defining the local indices

results in the list of candidate back-end servers for the query. Hence, integrating

distributed indexing with the MQO middleware contains two main tasks: (1) ex-

tending the back-end application server with a local index that tracks the contents

of its semantic cache; and (2) extending the proxy service so that it can host the

global index.

Each proxy has its own semantic cache, that is, a proxy has both a local index as

well as the global index for the MBRs of the back-end application servers. When the

proxy receives queries from clients, it searches its local index first in order to locate

suitable objects in its own semantic cache. Assuming the query cannot be fully

computed by the proxy, the proxy generates sub-queries for query regions that are

not fully computed. These sub-queries are expressed in terms of a query predicate

that also specifies the query spatial domain as an MBR. The MBR for each of the

sub-queries is then used to search the global index to locate an application server

with the greatest amount of MBR overlap or for maximizing other metrics.

Since there are many options and combinations of existing data products where

reuse might directly yield (or help computing) the required query result, a planning

and scheduling approach can certainly benefit from such information. Specifically,

an approach that considers the likelihood of cache hits against reducing the queuing

delay from imbalances in assigning queries to back-end servers can provide sub-

stantial benefits. If we schedule queries based on cache-hit likelihood only, a server

with popular aggregates can be swamped with a long queue of waiting queries.

On the other hand, if we only take into account the queue size on each back-end

server, many queries can experience long service times as they will be computed

from scratch. Thus, query scheduling plays an important role in load balancing

and, ultimately, in the overall response time and system throughput. In the rest

of this section, we briefly discuss some of the traditional query scheduling poli-

cies, namely (Round-robin and Load-based), and summarize several index-based

11

scheduling policies that we investigated in prior work [23]. This discussion forms

the baseline for a new query scheduling policy that makes use of estimates on the

available cache contents, which we present in Section 5.

Round-robin: The round-robin scheduling policy assigns queries equitably to each

application server as they arrive to the system. Round-robin is a simple, starvation-

free scheduling policy that successfully balances server loads when all queries have

similar costs. On the other hand, the round-robin policy clearly ignores state infor-

mation for each back-end server, such as the current contents of its local cache or

its current query load.

Load-based: The load-based scheduling policy assigns each query to the least busy

server at the time the query is scheduled. The MQO middleware includes a work-

load monitoring service used for tracking the current load on each server that pe-

riodically collects server utilization parameters, such as internal thread pool usage,

disk read rate, and the size of the query-wait queue. In our experimental evaluation

(see Section 6), when employing this type of scheduling, we monitored the amount

of time queries spent in the wait queue as a measure of the current server load.

Index/Load: The index/load combination scheduling policy assigns each query

to the server with the smallest estimated processing time. The policy estimates the

query processing time of each server based on a lookup into the global index as well

as the current server load, i.e., the size of the query-wait queue. First, the policy

does a lookup into the global index and decides whether the cache has reusable

aggregates for the query. If there are reusable aggregates, the policy optimistically

estimates the query processing time assuming cache hits for the query and cache

misses for the rest of the queries in the queue. If no aggregates are reusable for the

query, the policy pessimistically estimates the query processing time assuming that

all queries in the queue will be processed from the scratch. When using this policy,

if multiple back-end servers are found to have equal costs, one of them is chosen at

random.

12

MBR of cache server 2MBR of cache server 2
MBR extension of cache server 2

QMBR of cache server 1 Query
center

MBR of cache server 1

MBR extension of cache server 1

(a) Index/Overlap scheduling will select server 1 for the
query.

QMBR of cache server 1 Query
center

MBR of cache server 1

A B

MBR of cache server 2

(b) Index/Distance scheduling will select server 2 since
the query’s center is closer to server 2.

Fig. 4. Index/Overlap and Index/Distance policies

Index/Overlap: The Index/Overlap scheduling policy assigns each query to the

server that would require the smallest enlargement of the MBR for the aggregates

cached at that server once that query is computed. Figure 4(a) shows an example of

Index/Overlap scheduling. In the figure, the dashed rectangle represents the MBR

extension for each server because of the new query. Since Server 1 would have the

smaller enlargement triggered by executing the query, the policy assigns the query

to it. This policy tries to keep the MBR of each back-end server as small as possible

to achieve good clustering of queries with MBRs that are “close” in the multidimen-

sional space. This minimum enlargement policy is similar to the node split policy

of R-trees [14]. The decision whether to visit a child node depends on whether its

13

MBR overlaps the query region. Thus, R-trees are designed to try to minimize the

total area of each MBR to reduce the number of node visits. For similar reason,

the Index/Overlap policy tries to minimize MBR expansion to reduce dead space –

(i.e., multidimensional regions in which no actual objects are located, but are cov-

ered by the MBR as a result of an enlargement operation made to accommodate

a new object). This policy aims to minimize cache miss ratio by minimizing dead

space across all servers. However, it may fail to balance the load across servers be-

cause a server with a larger MBR is more likely to be assigned queries. As for the

Index/Load scheduling policy, ties are resolved by random selection. Unlike Load-

based and Index/Load, however, the Index/Overlap policy does not need to monitor

the load on the back-end servers.

Index/Distance: The Index/Distance scheduling policy assigns each query to the

server whose MBR center is closest to the center of the query, using an Euclidean

distance measure. Figure 4(b) shows an example. In the figure, the plus signs denote

the geometric centers of the MBRs and the query. Since the center for Server 2 is

closer to the query center than that of Server 1, the Index/Distance policy chooses

Server 2 to process the query. Unlike the Index/Overlap policy, the index/Distance

policy can balance the loads across the back-end servers as long as the geometric

centers of the MBRs are evenly distributed across the back-end servers yield good

load balancing, in general, this policy does imply good load balancing behavior.

5 The Distributed Exponential Moving Average Query Scheduling Policy

5.1 Exponential Moving Average

The Distributed Exponential Moving Average (DEMA) scheduling policy asymptot-

ically estimates the center point of the cache contents using an exponential moving

average (EMA) of the query center points.

14

EMA is a well-known statistical method to analyze historic data, which is most of-

ten used to predict stock prices and trading volumes [9]. In general, EMA-related

methods compute a weighted average of all observed data by assigning exponen-

tially more weight to recent data than earlier data. In the context of this paper, given

that each server replaces old cache entries based on a least-recently used policy

(LRU), assigning more weight to recent cached entries is a reasonable heuristic.

Alternatively, one can use a simple moving average (SMA) [9], which takes the

average of the past N query center points. If the proxy is aware of the current

number of cache entries in each back-end server, SMA can correctly represent the

average of the current cache contents. SMA, however, cannot reflect the moving

trend of arriving queries. Furthermore, keeping track of the last N query center

points is also as costly as what is done in the index-based scheduling policies. In

fact, SMA is similar to Index/Distance, but it uses the average of the center points

of all cached results, while Index/Distance uses the center point of the minimum

bounding box in the cache.

Let pt be the center of the query at time t > 0 and EMAt be the computed average

at time t after adding pt into the cache. Given the smoothing factor α ∈ (0, 1) and

the previous average EMAt−1, the next average EMAt can be defined incremen-

tally as

EMAt = α · pt + (1− α) ·EMAt−1 (1)

which can be expanded as

EMAt = αpt + α(1− α)pt−1 + α(1− α)2pt−2 + α(1− α)3pt−3 + · · · (2)

Although we call this value EMA-value, it can also be a multi-dimensional point if

the query is in multi-dimension.

The definition of EMA in Equation 2 assumes an infinite number of past data, so

15

that the weight-sum amounts to one. In practice, however, the number of queries in

the past is not infinite. Suppose N is the number of queries in the past. Then the

current EMA value computed by Equation 1 becomes

EMAt = αpt + α(1− α)pt−1 + · · ·+ α(1− α)N−1pt−N+1 (3)

Therefore, the sum of weights is less than one by (1− α)N .

Weight Error = α + α(1− α) + α(1− α)2 + · · ·+ α(1− α)N−1 + α(1− α)N + · · ·

−(α + α(1− α) + α(1− α)2 + · · ·+ α(1− α)N−1)

= α(1− α)N + α(1− α)N+1 + α(1− α)N+2 + · · ·

= α(1− α)N
· (1 + (1− α) + (1− α)2 + · · ·+ (1− α)N−1 + · · ·)

= (1− α)N (4)

This weight-error becomes smaller as the number of queries increases. In our ex-

periments, N was sufficiently large (up to 700), so the weight error is negligible.

The smoothing factor α in Equation 1 determines the degree of decay used to ex-

punge older data. For example, α close to 1 drastically decreases the weight as-

signed to the past data and α close to 0 gradually decreases that weight. The value

of α can be adjusted based on the size of the cache space. Given a cache size L,

we want to assign an enough weight-sum to the latest L queries (otherwise it can

cause false positives focusing too much on the old queries). At the same time, we

want to assign a non-negligible weight to the oldest query in the cache (otherwise

it can cause false negatives focusing too much on the recent queries). From our em-

pirical evaluation, we learned that the cache hit ratio was maximized when α was

close to 1/L. Since the weight-sum of the latest L queries is 1− (1− α)L and the

weight of the oldest query in the cache is α(1− α)L−1, choosing α = 1/L means

to assign a weight more than 0.63 (1 − (1 − 1/L)L > 0.63 when L > 0) to the

queries in the cache, and keep the weight of the oldest query in the cache around

1/L(1− 1/L)L−1 (e.g., 0.12 for L = 3.5 and 0.08 for L = 4.7 in our experiments).

16

Algorithm 1.
DEMA Algorithm

1: INPUT: a client query Q
2: MinDistance ←MaxNum
3: for s = 1 to NumberOfApplicationServers do
4: if EMA[s] is not initialized then
5: forward query Q to server s.
6: EMA[s]← Q;
7: return;
8: else
9: Distance← EuclideanDistance(EMA[s], Q);

10: if Distance < MinDistance then
11: SelectedServer ← s
12: MinDistance ← Distance
13: end if
14: end if
15: end for
16: forward query Q to SelectedServer.
17: EMA[SelectedServer]← (α ·Q) + (1− α) ·EMA[SelectedServer]

5.2 Exponential Moving Average in Distributed Query Processing

The distributed EMA (DEMA) query scheduling policy employs EMA computa-

tions as its main mechanism. In this case, the proxy calculates the EMA point for

each server and assigns each query to the server whose current EMA point is the

closest to the center of the query, as shown in Algorithm 1. Suppose we have n

servers and Es represents the EMA point of the sth server. For each query with its

center point at q, the proxy assigns the query to the server s∗ such that the distance

between Es∗ and q is the smallest among all servers. Then, the proxy updates the

EMA value of the assigned server by Es∗ = αq + (1 − α)Es∗ . Figure 5(a) shows

an example of a one dimensional problem space, where if the center of a query is

between E2 and M2, the query is forwarded to server 2.

The performance of a query-scheduling policy depends on how well it can balance

queries among application servers. Ideally, we want to assign new queries to the

different back-end servers with the same probability. The probability of assigning

a new query to a specific server depends on the size of the region (as a line in 1-

17

E2 E3E1
M1 M2

(a) 1-Dimensional Problem Space

E1 E2

E3

E4

E6 E0

(b) 2-Dimensional Problem Space

E5

Fig. 5. DEMA for load balancing

dimension space or as an area in 2-dimension space) where the server is the closest

among all the servers. In Figure 5(a), the region of server with EMA value of E2

is the range between M1 and M2. For a 2-dimensional space, Figure 5(b) shows

a Voronoi diagram for the EMA-values of the servers, and the central area is the

region for the server of E0.

DEMA balances the server loads by keeping the region size of each server as similar

as possible. Let us assume that the center of the query is uniformly distributed in

the problem space. In Figure 5(a), the query between M1 and M2 is assigned to the

server with E2. Moreover, a new query is more likely to land on the right segment

E2M2 than the left one M1E2. Therefore, by Equation 1, E2 is more likely to move

to the right than the left, balancing itself within its region M1M2. As all the servers

try to balance the distance from their left neighbor (the distance being 2 ×M1E2)

with the distance from their right one (the distance being 2×E2M2), the region for

each server converges to the same length.

Similarly, DEMA also balances the server load in two dimensions, as shown in

18

Figure 5(b). In the figure, E0 tends to move toward the center of its area because

the queries are more likely to land on the larger side of E0 (i.e., the upper-left

portion of the area) than the other side (i.e., the lower-right portion). As every server

does the same balancing, the distance from each server to any of its boundaries

converges to the same length, resulting in similar sized regions for each server. One

can make a similar argument for higher dimensional problem spaces. In Section 6

we empirically show that DEMA balances the load best among all the distributed

scheduling policies described in this paper.

Note that the DEMA policy can exert control over how responsive it is to changes in

the workload or cache sizes by tweaking the α parameter. Also, the DEMA policy

is simple in terms of state management, requiring no updates of back-end applica-

tion server information, while index based scheduling policies require updating the

MBR information for each of the back-end servers, which requires communication,

although a server performs an update only if a query changes the MBR representing

all of the cached data for that server.

6 Experiments

The primary objective of the experimental study was to measure system throughput

for the different scheduling policies described in Section 4 and Section 5. Perfor-

mance improvements from planning and scheduling are typically highly dependent

on the nature of applications, the system characteristics, and also the characteristics

of the experimental workload. In order to shed light on the magnitude of improve-

ments that can be expected from employing distributed indexing, we performed

studies using a computationally intensive computer vision application, which we

believe is a proxy for many of the visualization and data analysis techniques used

by scientific applications.

The multi-perspective vision studio (or MPVS) is a volumetric reconstruction appli-

19

(a) Keck Lab Model (b) VR Client GUI

Fig. 6. The Multi-Perspective Vision Studio application – (a) The set up for image capture
lab (b) The application Graphical User Interface

cation that processes very large amounts of image data from multiple video streams.

In an environment where several cameras are used for simultaneously capturing

scenes from various perspectives, as seen in Figure 6, more views can deliver addi-

tional information about the scene and potentially allow the recovery of interesting

3-D features with high accuracy and minimal intrusion into the scene [7].

Users interact with the MPVS application by submitting scene visualization queries.

A query computes a set of volumetric representations of objects that fall inside

a 3-dimensional box – one per frame – using a subset of the available cameras.

The query result is a reconstruction of the foreground objects lying within the

multidimensional query region (a pre-processing step removes background objects

from the stored images, producing silhouettes). The reconstructed volume for a

frame, i.e., the query result, is represented by an octree, which is computed to a

requested depth d. Deeper octrees represent the resulting volume at higher reso-

lutions, thereby displaying finer aspects and features found in the reconstructed

scene.

20

6.1 Experimental Environment

We have measured the performance of MQO running the MPVS application on

16 back-end servers and 1 front-end proxy server. Back-end servers and the proxy

were placed on different nodes of a Linux cluster. Each server has an Intel Xeon

2.66GHz processor with 2GB memory, and they are connected by Gigabit switched

Ethernet. Each of the 16 back-end servers can independently compute a volumetric

reconstruction query with access to complete replicas of the entire dataset.

The dataset we used is a multi-perspective sequence of 2600 frames generated by 13

synchronized color cameras, each producing 640 × 480 pixel images at 30 Hz [7].

The test dataset is partitioned into 32 silhouette image files (each file is 329 MB in

size totaling about 10 GB). In order to evaluate the scheduling policies we repli-

cated the datasets, thus each of the 16 back-end servers stores the 10 GB dataset.

Each of the 32 image files contains a collection of data chunks. A chunk of data is

a single image whose attributes include a camera index and a timestamp.

We created query batch files that have 700 queries each, with various query inter-

arrival times, simulating multiple simultaneous users posing queries to the system,

modeled as a Poisson process. The queries in a batch were constructed according

to a synthetic workload model since our real user traces were not sufficient for

carrying out all of the relevant experiments. The workload generator emulates a

hypothetical situation in which users want to view a short, multi-second 3D instant

replay of hot events that took place in the past, for example, in a live sports event

broadcast. The workload generator takes as input parameters a set of “hot video

frames” (e.g., slam dunks during the game) that mark the interesting scenes and the

length of a “hot interval” (i.e., the duration of the scene), characterized by a mean

and a standard deviation.

A query in a batch requests a set of 3D reconstructions associated with frames

selected according to the following model. The center of the interval is drawn ran-

21

domly with a uniform distribution from the set of hot frames (100 hot frames were

used). The length of the interval is selected from a normal distribution (each hot

frame is associated with a mean video segment length, statistically varying from 34

to 62 frames). Between the first and last frame requested by a particular query, in-

termediate frames can be skipped, i.e., a query may process every frame, every 2nd

frame, or every 4th frame. The skip factor is randomly selected. The 3-dimensional

query box was also fixed (queries reconstruct the entire available volume) and the

depth of an octree was 6. With octree depth 6, the number of voxels to be computed

and stored is 86 = 262144 voxels. The scene space in our dataset is 2m × 2m ×

2m, and each voxel is a 3.125cm × 3.125cm × 3.125cm cube. This number gives

an estimate of how much computation must be carried out per frame, as well as

the amount of memory we require per reconstructed frame. Queries also used data

from all the available cameras for reconstruction.

To measure performance, we considered the following metrics: Query Wait and

Execution Time (QWET), Query Execution Time (QET), Total Batch Query Time

(TotalBQT), Cache Hit Ratio, and Load Balancing Factor. QWET is the amount of

time from the moment a query is submitted to the system until it completes. That is,

QWET includes the delay (due to the proxy being busy servicing other queries) plus

the actual processing time. QET measures the elapsed time for a query to complete

from the moment a back-end server starts processing the query until completion as

measured at the proxy. Hence QET completely depends on the local cache hit ratio,

while QWET, to a greater degree, depends on load balancing across the back-end

application servers. Finally, TotalBQT measures the total execution time for one

query batch. From a user standpoint, lower QET and lower QWET implies faster

query turnaround time. Lower TotalBQT implies higher query server throughput.

We measured cache hit ratio by dividing the total number of image frames read

from cache by the number of image frames requested by batch queries. In order

to evaluate the load balancing behavior of the proposed scheduling policies, we

computed the standard deviation of the number of queries assigned to each back-

22

end server.

 10

 20

 30

 40

 50

 60

 70

161412108642

T
im

e
(s

ec
)

Number of Servers

AVG Query Execution Time

Round Robin
Load

Index/Load
Index/Overlap

DEMA
Index/Distance

(a) AVG Query Execution Time

 0

 200

 400

 600

 800

 1000

 1200

 1400

161412108642

T
im

e
(s

ec
)

Number of Servers

AVG Query Wait Execution Time

Round Robin
Load

Index/Load
Index/Overlap

DEMA
Index/Distance

(b) AVG Query Wait + Execution Time

 1000

 2000

 3000

 4000

 5000

 6000

161412108642

T
im

e
(s

ec
)

Number of Servers

Batch Query Execution Time

Round Robin
Load

Index/Load
Index/Overlap

DEMA
Index/Distance

(c) AVG Total Batch Query Time

 0

 20

 40

 60

 80

 100

161412108642

Pe
rc

en
ta

ge
 (

%
)

Number of Servers

Cache Hit Ratio

Round Robin
Load

Index/Load
Index/Overlap

DEMA
Index/Distance

(d) Cache Hit Ratio

 0

 5

 10

 15

 20

 25

 30

161412108642

st
dd

ev

Number of Servers

Standard Deviation for Query/Node Distribution

Round Robin
Load

Index/Load
Index/Overlap

DEMA
Index/Distance

(e) Load Balance

Fig. 7. The Effect of Number of Servers

It should be noted that the MQO middleware has several control knobs [4]. In order

23

to focus on measuring the performance of the different scheduling policies without

the influence of caching at the proxy, we disabled the semantic cache in the proxy

service, but kept it enabled on the back-end servers.

6.2 Performance

Figure 7 depicts system performance for the different query scheduling policies,

varying the number of back-end servers. This experiment shows the average ex-

ecution time of a query without and with the wait time included in Figures 7(a)

and 7(b), respectively. In this experiment, we fixed the size of the semantic cache at

64 MB and used LRU as the cache replacement policy on all back-end servers. Each

back-end server employed a single thread for processing the incoming queries. The

front-end proxy runs as many threads as needed, allowing multiple queries to be

accepted concurrently from clients. If the assigned back-end server is busy once a

query is dispatched for execution, the query might have to wait to be serviced from

the back-end server incoming queue.

While in general QWET (Figure 7(b)) and the total batch query execution time

(Figure 7(c)) decrease as more back-end servers are added, when queries arrive at a

faster rate than the back-end servers can process them, the queries might be waiting

in queues for a considerable amount of time. That can be seen by contrasting the

QET (Figure 7(a)) and QWET (Figure 7(b)) curves.

More interestingly, if the queries in the workload have a small number of hot spots,

frequently used cache objects are dispersed through the multiple back-end server

caches as the number of back-end servers increases, and the per server cache hit ra-

tio is usually lower early in the processing sequence. On the other hand, additional

back-end servers imply additional cache space. As a consequence, the average QET

decreases as more queries can be directly computed from cached results, as seen in

Figure 7(a). As expected, round-robin shows the worst performance in most cases.

24

Similarly, load-based scheduling also does not perform well. In both cases the poor

performance is a consequence of neither policy considering the contents of the

back-end server caches in scheduling queries for processing. On the other hand,

as the local caches co-located with each back-end server get populated, the three

index-based scheduling policies start to reap the benefits of increased cache hit rates

even when more servers and cache space becomes available, as compared to the

other policies (Figure 7(d)). Note that the DEMA scheduling policy shows signifi-

cant performance benefits over the two non-index-based policies. Despite that, the

DEMA scheduling policy fails to consistently outperform both the Index/Overlap

and Index/Distance policies. In this case, however, the query batch used for the ex-

periment comprises 200 queries with a 4 second average query inter-arrival time

(exponentially distributed) and the DEMA weight factor α was 0.5. In such a con-

figuration, when more than 10 back-end servers are available, most of the submitted

queries are scheduled and executed immediately without waiting in the queue, as

we can see that the absolute difference between QWET and QET is very small.

Later in this section, we will show how the number of waiting queries and α affect

overall performance.

With respect to load balancing, Figure 7(e) shows that the Index/Overlap policy has

much higher standard deviation in the number of queries assigned to a back-end

server, indicating inferior load balancing behavior compared to the Index/Distance

and DEMA policies. This explains its higher average QWET compared to the In-

dex/Distance policy, even though its cache hit rate is generally higher. As we dis-

cussed earlier, when the top-level MBR for a particular local index gets enlarged,

the proxy becomes biased and chooses the back-end server with the largest over-

lapping MBR. Thus, a majority of queries are forwarded to a single back-end

server, which results in that server having a longer wait queue, increasing QET

and QWET, and also negatively impacting load balance. Unlike Index/Overlap, the

other two index-based policies, Index/Distance and Index/Load, avoid such a load

imbalance problem. Although Index/Load does not severely suffer from load im-

25

balance, it tends to enlarge the local index MBRs leading to an increase in false

hits, as the proxy does not take into consideration the clustering of cached aggre-

gates. Occasionally this problem creates large amount of dead space (i.e., the MBR

contains large amounts of unfilled space) as compared to the Index/Distance and

Index/Overlap policies, as those both favor not increasing the MBR. On the other

hand, Index/Load benefits from bitmap encoding, which acts to mitigate the dead

space problem, as described earlier. Surprisingly, however, the decrease in cache

hit rate seems to indicate that the Index/Load policy loses its good query clustering

properties, i.e., sending queries to back-end servers where there is a higher likeli-

hood of a cache hit. Finally, and not surprisingly, the round-robin scheduling policy

shows the lowest standard deviation. Despite its excellent load balancing character-

istics, its low cache hit ratio accounts for its overall poor performance.

Next, we study the effect of increased load on the system. With 16 application

servers and a larger query workload comprising 700 queries, we controlled the

query inter-arrival time so that we can evaluate the effect of query scheduling as

a result of the amount of concurrent load presented to the system. In this case we

fixed each back-end servers’ local cache size at 64 MB. These results are shown

in Figure 8. A particularly illuminating result can be seen in Figure 8(d). As the

mean query inter-arrival time increases, we can see that the cache hit ratio of In-

dex/Distance policy fluctuates between 50% and 60%, while DEMA hit ratio stays

constant at around 64%. The reason why DEMA shows constant hit ratio is because

this policy depends on which queries have arrived before the current one, but not

on how long ago they arrived. On the other hand, the Index/Distance policy makes

scheduling decisions based solely on the cache index contents, not taking into ac-

count the queries that are already waiting in the queue. Hence, as more queries wait

in the queue, it is more likely that Index/Distance will make poor server assignment

decisions (as it cannot take into account other queries that might generate relevant

results in the near future). This ultimately explains why DEMA outperforms In-

dex/Distance in the heavier workload experiments (i.e., smaller query inter-arrival

26

 10

 20

 30

 40

 50

 60

 70

 80

10.8109.28.47.66.865.24.43.6

T
im

e
(s

ec
)

Mean Inter-Arrival Time (sec)

AVG Query Execution Time

Round Robin
Load

Index/Load
Index/Overlap

DEMA
Index/Distance

(a) Query Execution Time

 0

 100

 200

 300

 400

 500

 600

 700

10.8109.28.47.66.865.24.43.6

T
im

e
(s

ec
)

Mean Inter-Arrival Time (sec)

AVG Query Wait Execution Time

Round Robin
Load

Index/Load
Index/Overlap

DEMA
Index/Distance

(b) Query Wait and Execution Time

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

10.8109.28.47.66.865.24.43.6

T
im

e
(s

ec
)

Mean Inter-Arrival Time (sec)

Batch Query Execution Time

Round Robin
Load

Index/Load
Index/Overlap

DEMA
Index/Distance

(c) Batch Query Time

 0

 20

 40

 60

 80

 100

10.8109.28.47.66.865.24.43.6

Pe
rc

en
ta

ge
 (

%
)

Mean Inter-Arrival Time (sec)

Cache Hit Ratio

Round Robin
Load

Index/Load
Index/Overlap

DEMA
Index/Distance

(d) Cache Hit Ratio

 0

 10

 20

 30

 40

 50

 60

10.8109.28.47.66.865.24.43.6

st
dd

ev

Mean Inter-Arrival Time (sec)

Standard Deviation for Query/Node Distribution

Round Robin
Load

Index/Load
Index/Overlap

DEMA
Index/Distance

(e) Load Balance

Fig. 8. Workload Comparison

times) shown in Figure 8. Interestingly, the Index/Overlap policy performs worst in

this case primarily due to load imbalance. Since more queries are submitted than

for the earlier experiments shown in Figure 7, the poor load-balancing quality of the

27

Index/Overlap policy causes longer average waits in the queue, decreasing overall

system throughput.

 5

 10

 15

 20

 25

 30

0.90.70.50.30.1

T
im

e
(s

ec
)

α

AVG Query Execution Time

24MB (DEMA)
32MB (DEMA)
40MB (DEMA)
48MB (DEMA)

(a) Query Execution Time

 5

 10

 15

 20

 25

 30

 35

 40

0.90.70.50.30.1

T
im

e
(s

ec
)

α

AVG Query Wait-Execution Time

24MB (DEMA)
32MB (DEMA)
40MB (DEMA)
48MB (DEMA)

(b) Query Wait and Execution Time

 20

 30

 40

 50

 60

 70

 80

 90

0.90.70.50.30.1

Pe
rc

en
ta

ge
 (

%
)

α

Hit Ratio

24MB (DEMA)
32MB (DEMA)
40MB (DEMA)
48MB (DEMA)

(c) Cache Hit Ratio

 0

 5

 10

 15

 20

 25

 30

0.90.70.50.30.1

st
dd

ev

Cache Size

Standard Deviation for Query/Node Distribution

EMA

(d) Load Balance

Fig. 9. Sensitivity to α values

Finally, we look at the impact of calibrating the DEMA smoothing factor. We ran

experiments with different α settings, employing the 700-query batch described

earlier, with an exponentially distributed inter-arrival time with mean 7.6 seconds.

For this experiment we employed 16 back-end servers and varied the amount of

cache space available at each of them. The results are shown in Figure 9. Recall that

with smaller α values the DEMA policy will give more weight to a large number

of older entries in the cache. Therefore, when the cache capacity is inadequate to

hold the working set and DEMA is configured with a small α value, scheduling

decisions will be made from predictions based on cache contents that have been

28

evicted from the cache, possibly resulting in lower cache hit ratio. On the other

extreme, a larger α setting also may result in poor scheduling decisions, since it

will not accurately consider older cached results. In Figure 9 we see that setting α

to 0.1 (a small value) results in a low cache hit ratio with a 24 MB cache. Similarly,

higher value settings for α also result in worse hit ratios.

In the graphs shown in Figure 10, for smaller cache capacities, Index/Distance pol-

icy suffers from a higher rate of cache misses than DEMA. This is mainly because

Index/Distance does not consider the queries in the waiting queue for scheduling

purposes. In this situation, two factors contribute to inferior performance. First,

when the cache is small more queries have to be computed from scratch, as is also

the case for the other scheduling policies. However, because the decreased cache

hit ratio makes queries wait longer in the queue, Index-based scheduling policies

will evict results that could have been employed to speed up the computation of

queries already in the waiting queue.

In these experiments, a single frame in the MPVS application requires 262 KB of

storage. Inspecting query results revealed that the queries have high variance in

their space requirements: the smallest query required 514 KB of cache space and

the largest 20 MB. The variance is from the number of frames being different (2 -

80 frames). The average number of frames in the query workload was 26. Hence

24 MB of cache space can hold the intermediate data products for between 3 and

4 queries. Assuming that the cache has enough space to hold enough reconstructed

frames to compute between 3 and 4 query results, then ideally we should choose

the setting for α that gives most of weight to only 3 or 4 recent cache entries. From

Equation 2, α = 0.7 gives 99 % weight to the 4 oldest queries. However α = 0.7

makes the weight of the oldest cache result almost negligible (α(1−α)3.6 = 0.005).

On the other hand, α = 0.1 gives more than 70 % weight to the query results that

have already been evicted from cache. α = 0.3 gives about 80 % weight to the most

recent 4 queries, and the weight of the oldest cache result is about 0.08, which is

not bad considering that α(1− α)3.6 is at its maximum (0.087) when α is 0.22.

29

 5

 10

 15

 20

 25

 30

 35

96MB64MB48MB40MB32MB24MB

T
im

e
(s

ec
)

Cache Size

AVG Query Execution Time

DEMA α=0.3
Index/Distance

(a) Query Execution Time

 20

 40

 60

 80

 100

 120

 140

 160

 180

96MB64MB48MB40MB32MB24MB

T
im

e
(s

ec
)

Cache Size

AVG Query Wait-Execution Time

DEMA α=0.3
Index/Distance

(b) Query Wait and Execution Time

 2500

 3000

 3500

 4000

 4500

96MB64MB48MB40MB32MB24MB

T
im

e
(s

ec
)

Cache Size

Total Query Batch Execution Time

DEMA α=0.3
Index/Distance

(c) Batch Query Time

 20

 30

 40

 50

 60

 70

 80

 90

96MB64MB48MB40MB32MB24MB

Pe
rc

en
ta

ge
 (

%
)

Cache Size

Hit Ratio

DEMA α=0.3
Index/Distance

(d) Cache Hit Ratio

Fig. 10. Effect of cache size

Table 1
Comparison of Distributed Query scheduling policies

Scheduling Status Collection Cache Locality Merit Limitation

Round-Robin No No Good load balancing Heterogeneous systems

in homogeneous environment

Load-Based Yes No Good load balancing Poor cache hit ratio

Index/Overlap Yes Computed High cache hit ratio Load imbalance

Index/Distance Yes Computed High cache hit ratio, Indexing overhead

Good load balancing

in homogeneous environment

Index/Load Yes Computed Good load balancing Limited cost model

DEMA No Predicted Good for heavy loaded systems, Single front-end prediction

No index required

30

As a final note, despite DEMA’s simplicity and surprisingly good performance, we

should point out that it also has limitations that are not present for the indexing-

based policies. For example, if there exists more than one proxy service server or

if back-end application servers can receive queries directly from clients (which the

MQO middleware does permit), the simple predictive model upon which DEMA

relies for routing the queries for execution might be quite inaccurate, since the

information the DEMA model relies on might be incomplete.

To summarize, we have learned the following lessons from the experimental study.

First, distributed indexing can help improve overall query processing performance,

measured both by system throughput metrics and by query response time. Sec-

ond, load balancing is as important a factor in overall performance as is attempting

to route queries to back-end servers aiming at improving reuse by increasing the

cache hit likelihood. Third, an index-based scheduling policy that considers both

load balancing and clustering properties (such as the Index/Distance policy) tends

to outperform less informed policies. The Index/Distance policy is most stable,

rarely performing badly compared to the policies that use less information. Finally,

the DEMA policy, despite its simplicity, shows stable and competitive performance

when compared to more informed indexing-based scheduling policies in situations

where the system is heavily loaded and the cache size is not large enough to ac-

commodate the working set. A summary of these findings is shown in Table 1.

7 Conclusion

In this paper we have described how a Grid-enabled multidimensional indexing

scheme and an exponential moving average approach can be used by a distributed

multiple query optimization middleware system to generate better query plans on

behalf of the application it supports. We have devised scheduling policies that

employ information about the contents of remote semantic caches as well as dis-

tributed system load information with two main goals in mind. First, queries should

31

be sent to servers that contain data products that are relevant to computing the re-

sults for these new queries, thus increasing the likelihood of reuse of pre-computed

results. Second, queries should be dispatched to the back-end servers in a balanced

way, so the distributed computing resources can be used with equal likelihood,

reducing contention and response time and consequently and increasing the appli-

cation’s throughput.

We have also presented a novel statistical prediction-based query scheduling policy

that shows comparable query response time and system throughput to index-based

scheduling policies, while being simpler from a bookkeeping standpoint. More-

over, it outperforms the index-based scheduling policies when the system is heavily

loaded and the cache size is not large enough to accommodate the working set.

While we have made progress in distributed query planning and scheduling, we

believe that query scheduling and cache replacement policies must be designed to

work in tandem such that the distributed local caches can try to closely capture the

global and dynamic state of the relevant working set. We also postulate that, under

many circumstances, data migration techniques and, possibly, the pre-computation

of frequently used intermediate cached data products by idle back-end servers can

help to further improve query processing performance. By distributing the working

set of reusable cached results, wait times can be decreased because that will allow

the proxy to use multiple back-end servers for a higher percentage of queries, ulti-

mately providing better workload distribution. These are interesting ideas that we

intend to investigate in the near future.

References

[1] Henrique Andrade, Tahsin Kurc, Alan Sussman, and Joel Saltz. Efficient exe-
cution of multiple query workloads in data analysis applications. In Proceed-
ings of the ACM/IEEE SC2001 Conference, November 2001.

[2] Henrique Andrade, Tahsin Kurc, Alan Sussman, and Joel Saltz. Active Proxy-

32

G: Optimizing the query execution process in the Grid. In Proceedings of the
ACM/IEEE SC2002 Conference, November 2002.

[3] Henrique Andrade, Tahsin Kurc, Alan Sussman, and Joel Saltz. Multiple
query optimization for data analysis applicationson clusters of SMPs. In Pro-
ceedings of the 2nd IEEE/ACM International Symposium on Cluster Comput-
ing and the Grid (CCGrid). IEEE Computer Society Press, May 2002.

[4] Henrique Andrade, Tahsin Kurc, Alan Sussman, and Joel Saltz. Optimiz-
ing the execution of multiple data analysis queries on parallel and distributed
environments. IEEE Transactions on Parallel and Distributed Systems,
15(6):520–532, June 2004.

[5] Richard E. Bellman. Adaptive Control Processes: A Guided Tour. Princeton
University Press, NJ, 1961.

[6] Michael Beynon, Chialin Chang, Umit Catalyurek, Tahsin Kurc, Alan Suss-
man, Henrique Andrade, Renato Ferreira, and Joel Saltz. Processing large-
scale multidimensional data in parallel and distributed environments. Parallel
Computing, 28(5):827–859, May 2002. Special issue on Data Intensive Com-
puting.

[7] Eugene Borovikov, Alan Sussman, and Larry Davis. A high performance
multi-perspective vision studio. In Proceedings of the 17th ACM International
Conference on Supercomputing (ICS), 2003.

[8] Fa-Chung Fred Chen and Margaret H. Dunham. Common subexpression pro-
cessing in multiple-query processing. Transactions on Knowledge and Data
Engineering, 10(5):493–499, 199.

[9] Ya-lun Chou. section 17.9, Statistical Analysis. Holt International, 1975.
[10] Minos Garofalakis and Yannis Ioannidis. Multi-dimensional resource

scheduling for parallel queries. In Proceedings of 1996 ACM SIGMOD In-
ternational Conference on Management of Data (SIGMOD), 1996.

[11] Bugra Gedik and Ling Liu. MobiEyes: Distributed processing of continuously
moving queries on moving objects in a mobile system. In Proceedings of the
9th International Conference on Extending Databases Technology (EDBT),
2004.

[12] Parke Godfrey and Jarek Gryz. Answering queries by semantic caches. In
Proceedings of the 10th International Conference on Database and Expert
Systems Applications (DEXA), pages 485–498, 1999.

[13] Amit Gupta, S Sudarshan, and Sundar vishwanathan. Query scheduling in
multi query optimization. In International Database Engineering and Appli-
cations Symposium (IDEAS’01), pages 11–19, 2001.

[14] Antonin Guttman. R-trees: A dynamic index structure for spatial searching.
In Proceedings of 1984 ACM SIGMOD International Conference on Manage-
ment of Data (SIGMOD), pages 47–57, 1984.

[15] Ibrahim Kamel and Christos Faloutsos. Parallel R-trees. In Proceedings of
1992 ACM SIGMOD International Conference on Management of Data (SIG-
MOD), pages 195–204, 1992.

[16] Myong H. Kang, Henry G. Dietz, and Bharat K. Bhargava. Multiple-query
optimization at algorithm-level. Data and Knowledge Engineering, 14(1):57–

33

75, 1994.
[17] Jik-Soo Kim, Henrique Andrade, and Alan Sussman. Comparing the per-

formance of high-level middleware systems in shared and distributed mem-
ory parallel environments. In Proceedings of 19th IEEE International Paral-
lel and Distributed Processing Symposium (IPDPS). IEEE Computer Society
Press, April 2005.

[18] Jik-Soo Kim, Henrique Andrade, and Alan Sussman. Principles for designing
data-/compute-intensive distributed applications and middleware systems for
heterogeneous environments. Journal of Parallel and Distributed Computing,
67(7):755–771, July 2007.

[19] Nick Koudas, Christos Faloutsos, and Ibrahim Kamel. Declustering spatial
databases on a multi-computer architecture. In Proceedings of the 5th Inter-
national Conference on Extending Databases Technology (EDBT), 1996.

[20] Manish Mehta and David J. DeWitt. Managing intra-operator parallelism in
parallel database systems. In Proceedings of the 21st International Confer-
ence on Very Large Data Bases (VLDB), pages 382–394, 1995.

[21] Mohamed F. Mokbel, Xiaopeng Xiong, Moustafa A. Hammad, and Walid G.
Aref. Continuous query processing of spatio-temporal data streams in
PLACE. In Proceedings of the 2nd Workshop on Spatio-temporal Databases
Management (STDBM), 2004.

[22] Anirban Mondal, Masaru Kitsuregawa, Beng Chin Ooi, and Kian Lee Tan.
R-tree-based data migration and self-tuning strategies in shared-nothing spa-
tial databases. In ACM Proceedings of the 9th international symposium on
Advances in Geographic Information Systems (GIS), pages 28–33, 2001.

[23] Beomseok Nam, Henrique Andrade, and Alan Sussman. Multiple range
query optimization with distributed cache indexing. In Proceedings of the
ACM/IEEE SC2006 Conference, 2006.

[24] Manuel Rodrı́guez-Martı́nez and Nick Roussopoulos. MOCHA: A self-
extensible database middleware system for distributed data sources. In Pro-
ceedings of 2000 ACM SIGMOD International Conference on Management
of Data (SIGMOD), pages 213–224. ACM Press, May 2000. ACM SIGMOD
Record, Vol. 29, No. 2.

[25] Prasan Roy, S Sehadri, S Sudarshan, and Siddhesh Bhobe. Efficient and ex-
tensible algorithms for multi-query optimization. In Proceedings of 2000
ACM SIGMOD International Conference on Management of Data (SIG-
MOD), pages 249–260, 2000.

[26] Bernd Schnitzer and Scott T. Leutenegger. Master-Client R-Trees: A new
parallel R-tree architecture. In Proceedings of 11th International Conference
on Scientific and Statistical Database Management (SSDBM), pages 68–77,
1999.

[27] Timos K. Sellis and S. Ghosh. On the multiple-query optimization prob-
lem. IEEE Transactions on Knowledge and Data Engineering, 2(2):262–266,
1990.

[28] Aman Sinha and Craig Chase. Prefetching and caching for query schedul-
ing in a special class of distributed applications. In Proceedings of the 1996

34

International Conference on Parallel Processing (ICPP’96), pages 95–102,
Bloomingdale, IL, 1996.

[29] Duane Wessels and K. C. Claffy. ICP and the Squid web cache. IEEE Journal
on Selected Areas in Communications, 16(3):345–357, April 1998.

[30] Xiaopeng Xiong, Mohamed F. Mokbel, Walid G. Aref, Susanne E. Hambr-
usch, and Sunil Prabhakar. Scalable spatio-temporal continuous query pro-
cessing for location-aware services. In Proceedings of 16th International
Conference on Scientific and Statistical Database Management (SSDBM),
2004.

[31] Kai Zhang, Henrique Andrade, Louiqa Raschid, and Alan Sussman. Query
planning for the Grid: Adapting to dynamic resource availability. In Proceed-
ings of the 5th IEEE/ACM International Symposium on Cluster Computing
and the Grid (CCGrid), Cardiff, UK, May 2005.

[32] Yihong Zhao, Prasad M Deshpande, Jeffrey F Naughton, and Amit Shukla.
Simultaneous optimization and evaluation of multiple dimensional queries.
In Proceedings of 1998 ACM SIGMOD International Conference on Man-
agement of Data (SIGMOD), pages 271–282, 1998.

35

